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ABSTRACT  

Purpose 

This paper analyses the effectiveness of gateroad reinforcing by means of cable bolts under weak rock conditions. In the 

worldwide mining industry the method of gateroad support reinforcement using cable bolts is considered to be effective. 

The experimental application of cable bolts was performed in gateroad #165 of the "Stepova" mine, Western Donbass, 

Ukraine, and required instrumental control of "support-rock mass" system conditions. 

Methods 
Obtaining absolute displacement of "support-rock mass" system elements and extensometer anchors by means of levelling 

in order to improve the method of observation. 

Results 

The peculiarities of geomechanical behaviour of rock mass in the roof of gateroads is investigated. It has been established 

that the application of cable bolts allows for a reduction in the vertical convergence of the gateroad, both in front of and 

behind the longwall face. 

Practical 

implications 

Advantages of cable bolts instead of end-face support and props in case of a high advance rate of the longwall face are 

shown. 

Originality/ 

value 

1. There are no regulations and state standards in regard to cable bolt installation parameters in the mines of Ukraine, con-

sequently the usage of cable bolts for gateroad maintenance required preliminary testing under geological conditions at the 

Western Donbass mines with soft enclosing rocks. 2. Combining levelling with observations using extensometers allowed 

for the detection of the rock layers’ uniform sagging zone in the roof of the gateroad. 
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1. INTRODUCTION 

The current economic environment which the coal indus-

try of Ukraine is experiencing requires increasing volumes of 

production whilst reducing the operating costs of mines.  

Issues arise in the gateroad contour longwall which pro-

vides ventilation and transportation of rock mass and mate-

rials. The excessive impact of abutment pressure manifesta-

tions on the support of gateroads leads to cross-section losses 

and to further reduction of coal mining efficiency. This is 

particularly evident in conditions of weak strata.  

One example of the aforementioned condition is the geo-

logical condition of the Western Donbass coal mines. The 

mines are characterized by soft enclosing rocks (with a unia-

xial compressive strength of less than 30 MPa), thin (0,6–1,2 m) 

lightly pitching coal (α < 5), and a depth of 200 m to 600 m. 

Coal extraction is carried out by longwall mining with ca-

ving. 

According to Standart (2007), in soft rocks (UCS < 30 MPa), 

it is not recommended to maintain gateroads behind the 

longwall face. Nevertheless research was carried out for these 

conditions and technology for gateroad maintenance was 

developed under advance rates of the longwall face of up to 

100 m/month (Instruktsiya, 1994, p. 2). Thus there is a plan 

that support of gateroad should be reinforced in the area of 

abutment pressure ahead of the longwall (area 1, Fig. 1), at 

the T-junction (area 2, Fig. 1) and behind the longwall face 

(area 3, Fig. 1). 

 

Fig. 1. Areas of longwall influence on the gateroad 
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The reinforcement of the gateroad support ahead of the 

longwall face (area 1) by means of props (wooden, hydraulic 

or friction) is recommended. The usage of face-end support is 

believed to mechanize the process of intersectional suppor-

ting (area 2), improve safety and productivity (Shirokov, 

Lider, & Petrov, 1987, pp. 4, 15). This type of "classic" sys-

tem of gateroad support reinforcement in areas 1–2 is charac-

teristic for the longwall mines of Ukraine (Fig. 2). 

 

Fig. 2. The "classic" support and reinforcement pattern of the gateroad 
#163 at intersection with #161 longwall: 1 – longwall set of equipment;  
2 – steel arch support KShPU-17,7; 3 – rock bolts; 4 – hydraulic props 
installed 20 m in front of the longwall face and under the horsehead;  
5 – rock bolts connected to the top section of arch support; 6 – face-end 
supports; elements of roadside pack: 7 – breaker row; 8 – breaker props;  
9 – chock; 10 – wooden prop between the roof of the seam and the floor of 
the gateroad; 11 – wooden props installed under each arch; 12 – steel 
horsehead 

However, it is ineffective in cases of high advance rate of 

the longwall face (more than 100 m/month) because of the 

high labor input of the works, time spent on operations near 

the face-end, and the cluttering of the gateroad. 

A system of gateroad support reinforcement by means of 

cable bolts installed before the beginning of abutment pres-

sure influence in areas 1–2 is considered to be effective. This 

system excludes the usage of props in area 1 and face-end 

support at the intersection (area 2). Experience of cable bolts 

application has been accumulated abroad (Razumov, Gre-

chishkin, Samok, & Pozolotin, 2011; Tadolini & McDonnell, 

2010). There are no regulations and state standards with re-

gard to the cable bolt installation parameters in Ukrainian 

mines. That is why, the usage of cable bolts required prelimi-

nary testing and geomechanical substantiation under the 

geological conditions that exist in the Western Donbass 

mines with rocks with a UCS of less than 25 MPa (Khaly-

mendyk, 2011).  

This article is dedicated to the effectiveness of the experi-

mental method of gateroad #165 reinforcing at T-junction 

and in front of #163 longwall face at the "Stepova" mine, 

which included the application of cable bolts instead of face-

end support and props. 

2. GEOLOGICAL AND TECHNICAL CONDITIONS 

The gateroad was driven from the roadways at a level of 

300 m down the dip of the coal seam C6 to a level of 490 m, 

with an average inclination of 4 (Fig. 3). Coal seam C6 is 

fractured, simply structured and has no cohesion with the 

enclosing rocks. The extracting seam thickness is 1.04 m. 

Enclosing rocks are interstratified siltstones and mudstones 

with a UCS of up to 25 MPa and weak cohesion. 

 

Fig. 3. Principle scheme of mine workings at C6 seam 

Gateroad #165 was arched with KShPU-17,7, with spacing 

0,7 m (Fig. 4). The roof of the gateroad was bolted on the 

depth of 2.2 m with 5 bolts in a row. Load-bearing capacity 

of bolts was 275 kN, untensioned, resin-grouted using resin-

cartridges of a total length of 1.5 m.  

Maintenance of the gateroad #165 in the area of abutment 

pressure and at the intersection with the longwall (areas 1, 2, 

Fig. 1) was performed by two rows of cable bolts with a load 

bearing capacity of 210 kN (Fig. 4, No 4). The density of the 

cable bolt setup was 0.3 pcs/m
2
.  

Two wooden props were installed under each steel arch 

and a roadside pack was erected behind the face of the 

longwall (Fig. 4, No 7–11). 

 

Fig. 4. Support and reinforcement pattern of the gateroad #165 at 
intersection with #163 longwall: 1 – longwall set of equipment; 2 – steel 
arch support KShPU-17,7; 3 – rock bolts; 4 – cable bolts, length 6.0 m, 
paired installation, spacing 1.4 m; 5 – rock bolts connected to the top 
section of arch support; 6 – rock bolt for strengthening of the roof above the 
roadside pack; elements of roadside pack: 7 – breaker row; 8 – breaker 
props; 9 – chock; 10 – wooden prop between roof of the seam and floor of 
the gateroad; 11 – wooden props installed under each steel arch 

3. RESEARCH TECHNIQUE 

The measurement of the deformation of the support ele-

ments and rock mass ("support-rock mass" system) i.e. roof, 

floor, rock layers in the roof, elements of arch support, are 

possible with the use of wall-embedded marks (Fig. 5) 

(Prusek, 2010; Metodicheskiye ukazaniya, 1973; Novikov & 

Shestopalov, 2012). 
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Fig. 5. Typical observations of the displacement of support elements and 
rock mass: 1–5 – linear measurements from the level of wall-embedded 
marks to: 1 – top section of steel arch; 2 – gateroad floor; 3 – the deepest 
placed anchor of the extensometer; 4 – end of steel arch rack; 5 – collar of 
the borehole of extensometer; 6 – displacement of the anchors of exten-
someter with respect to the deepest (highest) placed anchor 

This method is substantiated when the wall-embedded 

marks are immovable. In soft rock conditions and in abut-

ment pressure zones the phenomenon of rib bending often 

occurs (Fig. 6). It inevitably leads to the displacement of the 

marks and to a decrease in reliability of the results gained. 

 

Fig. 6. Condition of rock mass around the gateroad at the "Stepova" mine  
– phenomenon of rib bending 

To improve the method of observation the use of levelling 

in order to obtain absolute displacement of "support – rock 

mass" system elements and extensometer anchors, was pro-

posed (Fig. 7). Thus the benchmarks are placed outside of the 

zone of longwall influence therefore ensuring their immova-

bility, while the usage of accurate level provides sufficient 

accuracy of the elements position determination at the obser-

vation station. 

Such an improved method was used during the experiment in 

the #165 gateroad. To monitor the deformation of the rock mass, 

multiple-position borehole extensometers (MPBX) were used. 

Boreholes were drilled vertically in the roof of the gateroad.  

The depth of the boreholes was 8–9 m, anchors were placed 

with a spacing of 1.0 m (some anchors were lost during the 

observations due to mechanical damage to the ropes). 

The strain of the rock mass ε was calculated for the mid-

points between MPBX anchors from the equation:  
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where: 

li – (i+1) – is the initial length between #i and #i+1 anchors 

placed in the borehole, m;  

li' – (i+1)' – is the changed length between #i and #(i+1) anchors 

after longwall face advanced, m;  

i – is the sequential number of the anchor (corresponding to 

the depth of the anchor placing from the collar of the 

borehole). 

 

Fig. 7. Levelling of "support-rock mass" system elements and anchors of 
extensometer: 1–5 readings from staff placed on: 1 – top section of steel 
arch; 2 – gateroad floor; 3 – the deepest placed anchor of the extensome-
ter; 4 – end of steel arch rack; 5 – collar of the borehole of extensometer;  
6 – displacements of the anchors of extensometer with respect to the 
deepest (highest) placed anchor 

The displacement of the roof, floor, top section of the steel 

arch, ends of the steel arch racks, collar of the borehole ("#0 

anchor") and the deepest-placed anchor of extensometer were 

obtained by levelling. 

4. RESULTS OF THE RESEARCH 

The combination of levelling with observations of exten-

someters has been applied in the course of the observations in 

gateroad #165. Graphs of the displacement of extensometer 

anchors at three observation stations are presented in figures 

8, 10, 12. Graphs of the vertical strain of rock mass in the 

roof of the gateroad are presented in figures 9, 11, 13. Dis-

tance to the longwall face with a "minus" sign, for example 

"–40" means that it is 40 m behind the longwall face. 

 

Fig. 8. Absolute displacement of extensometer anchors at observation 
station #1 

 

Fig. 9. Vertical strain of rock mass at observation station #1 
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Fig. 10. Absolute displacement of extensometer anchors at observation 
station #2 

 

Fig. 11. Vertical strain of rock mass at observation station #2 

 

Fig. 12. Absolute displacement of extensometer anchors at observation 
station #3 

 

Fig. 13. Vertical strain of rock mass at observation station #3  

The reaction of the rock mass on the abutment pressure 

was detected at a distance of about 40–60 m in front of the 

longwall face. In front of the longwall the maximum dis-

placement of the rock mass in the roof of the gateroad was up 

to 40 mm (Fig. 8). At a distance from 0 to 20 m behind the 

longwall face, the lamination of rock layers develops to  

a depth of 7 m in the roof at stations #1, and #3, and to  

a depth of 6.5 m at station #2, when the maximum displace-

ments of the anchors are 110 mm. With further longwall face 

advancement, a rock layer of about 4 m in thickness is  

detached from the overlying strata while uniform sagging of 

strata above 7.0 m is taking place. 

The vertical strain of rock mass in the bolted zone does not 

exceed the limit of elastic deformation of bolts in front of the 

longwall face (Fig. 9, 11, 13). The maximum value of tension 

strain in cable bolted rock layers varied from 150 to 270 

mm/m behind the longwall face. 

Installation density and load-bearing capacity of the cable 

bolts was sufficient to maintain the gateroad in the area of 

abutment pressure in front of the longwall face and at the  

T-junction. However, behind the longwall face the weight of 

the rocks in the disintegration zone exceeded the load-bearing 

capacity of the cable bolts, which led to elastic deformation 

of the cable bolts and to the breaking away of the cable bolt 

locks and bearing plates (Fig. 14). 

 

Fig. 14. Breaking away of the locks and bearing plates as a result  
of an excessive load on the cable bolt 

The intensive development of the disintegration zone in 

the roof of the gateroad behind the longwall face is explained 

by the fact that the actual resistance of the roadside pack, 

built up on the "gateroad – goaf" border, varied. Consequent-

ly, the sagging of the roof over the roadside pack was al-

lowed. According to the results of the research, conducted by 

scientists of the Central Mining Institute, the load on the 

gateroad steel arch support behind the longwall face does not 

exceed its load bearing capacity, in the case of building an 

effective roadside pack and roof bolting (Prusek & Lubosik, 

2006). Functional connection between the sagging of the roof 

over the roadside pack and the value of the vertical conver-

gence at the gateroad was highlighted in a research paper 

(Khalymendyk, 2011). In such a manner the sagging of the 

roof over the roadside pack led to greater displacement of the 

rocks in gateroad #165. The results of the investigations, 

conducted in gateroad #165 behind the longwall face, showed 

that the dependence of vertical convergence in the gateroad 

(Δh) on the sagging of the roof over the roadside pack at the 

"gateroad-goaf" border (Δc) is described by the equation 

(Fig. 15): 

 

 0.828  
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The degree of correlation between Δh and Δc is 0.880. 
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Fig. 15. Dependence of vertical convergence in gateroad (Δh) on the 
sagging of the roof over the roadside pack at the border "gateroad-goaf" 
(Δc): 1 – contour of the gateroad before deformation; 2 – deformed contour 
of the gateroad behind the longwall face; r – roof sag; f – floor heave; Δh = r + f 

An analogue of gateroad #165 was gateroad #163, which 

was driven for the purpose of extracting the neighboring 161 

longwall and was under similar geological conditions (Fig. 

3). Maintenance of gateroad #163 was carried out in accor-

dance with the regulatory document (Instruktsiya, 1994) 

using the "classic" scheme with props and face-end support 

(Fig. 2). The advance rate of longwall face 161 was up to 120 

m/month when operating the same plow system as in 

longwall 163. 

The comparative plot of vertical convergence for gateroad 

#165 reinforced with cable bolts and gateroad #163 without 

cable bolts is shown in figure 16. 

 

Fig. 16. Comparative plot of vertical convergence in gateroads #165  
and #163  

Dependence of gateroad #165 and the vertical conver-

gence (Δh
165

) on the distance (L) to longwall face 163 is 

described by the equation: 
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The dependence of gateroad #163’s vertical convergence 

(Δh
163

) on the distance (L) to longwall face 161 is described 

by the following equation: 
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The application of cable bolts led to a reduction in the 

losses of gateroad height ahead of the face of the longwall 

and at the intersection by no less than 3 times the original 

amount (without cable bolts), and behind longwall face – by 

about 2 times the original amount (without cable bolts). 

5. CONCLUSIONS 

1.  The experimental method of gateroad #165 support the 

view that reinforcement with cable bolts in the area of 

abutment pressure ahead of longwall face 163 and at the 

T-junction has a clear advantage over "classic" methods. 

In addition, the exclusion of props ahead of the longwall 

face and face-end support at the intersection allowed for 

the reduction of labor intensity, the time spent on 

operations at the face-end, increasing the free space in the 

gateroad and at the intersection of the gateroad with  

a longwall. This allowed for the increase of the advance 

rate of longwall face 163 to 200 m/month. 

2.  According to the results of the experiment the density of 

the cable bolts setup of 0.3 pcs/m
2
 is enough to effectively 

maintain the gateroad in the area of abutment pressure 

and at the T-junction. But to prevent the displacement of 

the roof behind the longwall face such density is 

insufficient. 

3.  Usage of the MPBX and levelling of the MPBX anchors 

allowed for the establishment of a zone of rock 

delamination to a depth of 7.0 m in the gateroad roof and 

a zone of uniform sagging of rock layers above 7.0 m. 

The maximum value of the sagging is 200 mm. Practical 

importance of the obtained results consists in their usage 

for substantiation of installed support parameters. The 

recommended length of cable bolts for these conditions 

should be 8.0 m, setup density is determined from the 

weight of the rocks in the zone of delamination 

(disintegration) and total bearing capacity of the gateroad 

steel arch support and the roadside pack. It is impossible 

to resist the uniform sagging of the rock layers, as it 

occurs as a result of elastic deflection which takes place 

because of coal seam extraction. That is why the support 

of the gateroad and the roadside pack should compensate 

for the sagging of the rock layers. This is realized due to: 

the deformation of the rock mass of the disintegration 

zone; deformation of the roadside pack; presence of 

clearance between steel arch support and contour rocks of 

the gateroad. 

4.  The development of the gateroad’s vertical convergence 

depends not only on the setup density of the cable bolts, 

but also on the bearing capacity of the roadside pack. 

Thus, all bearing elements of the support should work as  

a unified system "steel arch support – cable bolts  

– protective pack" for the effective maintenance of the 

gateroad behind the longwall face. 
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