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ABSTRACT  

Purpose 

Methane recovery is interesting not only because of its clean combustion; it is also beneficial for the environment because 

of the reduction of the amount of methane emitted into the atmosphere, which is important because of methane’s signifi-

cant impact on the greenhouse effect. However, desorption of methane is a slow process, significantly dependent on the 

coalification of coal, its porosity and petrographic composition. Injection of carbon dioxide into the coal bed under suffi-

cient pressure might be a factor in stimulating the efficiency of this process, as – because of preferential sorption – carbon 

dioxide displaces methane molecules previously absorbed in the coal matrix. 

Methods 

The measurements were made for Polish low-rank coal used for the analysis of methane recovery from Polish coal mines. 

Coal samples were collected from sites used for geological, sorption and petrographic research, as well as for the assess-

ment of the reservoir’s genetic origin CH4 content. Experimental studies of sorption were performed with the use of the 

volumetric method at a lower and higher gas pressure. 

Results 

The methane isothermes show more than double the reduction of adsorption along with increasing temperature. The most sig-

nificant changes of sorption capacity due to temperature variations can be seen when observing the difference in the course  

of the hysteresis of sorption/desorption of the gas as a function of temperature. In cases where there is a temperature of 323 K, 

a temperature hysteresis loop might indicate larger quantities of methane trapped in the porous structure of coal. In cases  

of carbon dioxide as sorbate, a similar shape of sorption isotherms occurred at both temperatures, while the temperature  

increase caused approximately double the reduction of sorption capacity. Also the isotherm’s shape is similar for both temper-

atures of measurement, indicating no effect of temperature on the amount of gas within the structure of the tested coal. 

High-pressure isotherms of CO2 and CH4 are confirmed in the literature, proving that carbon dioxide is the gas that allows 

the best penetration of the internal structure of bituminous coal. The critical temperature of CO2 (304.5 K) is so high, that 

sorption measurements can be performed at room temperatures (293, 298 K), where activated diffusion is relatively fast. 

Practical 

implications 

Understanding the sorption of gases is the primary issue, related to the exploitation of coal seams, when explaining the 

mechanism of gas deposition in coal seams and its relationship with outbursts of rocks and gases in mines. 

Originality/ 

value 

The results indicate successful sorption of carbon dioxide in each experiment. This provides the rationale to study the  

application of the coal tested to obtain methane genetic origin genetic methane with the use of the CO2 injection.  

Keywords  
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1. INTRODUCTION 

When considering the possibility of CO2 limitation, three 

options exist to reduce the total emission of CO2 into the 

atmosphere i.e.: 1) reduction of energy intensity, 2) reduction 

of carbon intensity, 3) enhancment of CO2 sequestration. 

Nowadays it is believed that carbon capture and storage  
 

(CCS) technology is an obvious and priority candidate for 

long term technology policies and enhanced R&D efforts 

(Wdowin, Franus,  Panek, 2012).  

Understanding the sorption of gases, related to the exploi-

tation of coal seams, is essential when explaining the mecha-

nism of gas deposition in the coal seams and its relationship  
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with outbursts of rocks and gases in mines. It is assumed, that 

the largest part of the gas within the coal seam is the methane 

which may be either in a free state (filling the pores and fis-

sures), in the condensed surface phase (physical adsorption), 

or in the form of a molecular colution (absorption) (Crosdale, 

Beamish,  Valix, 1998). Methane recovery from coal seams 

based on natural gas desorption is related to safety issues, 

increasing environmental requirements (ozone layer, global 

warming, etc.) and the use of CH4 from coal as an additional 

energy source. As an unconventional natural gas resource, 

coalbed methane receives worldwide attention. Coal seam 

gas is produced using methods and technologies adapted 

from the conventional oil and gas industry. Both primary 

(pressure) depletion and enhanced coalbed methane recovery 

(ECBM) methods have been tested for different pilot scales. 

In the ECBM process, non-hydrocarbon gases are injected to 

improve recovery of CH4, either by stripping or displace-

ment. In the case of displacement with CO2 injection, one 

additional benefit is to simultaneously sequester carbon dio-

xide, if the geology and hydrology of the coalbed permit long 

term storage of injected gas (Mango, 2001; Harpalani, Prusty, 

 Dutta, 2006; Bachu, 2007; Prusty, 2008; Gentzis, Goodarzi, 

Cheung,  Laggoun-Defarge, 2008; Han, Sang, Cheng,  

 Huang, 2009; Ozdemir, 2009; Deisman, Mas Ivars, Darcel, 

 Chalaturnyk, 2010; Saghafi, 2010; Tarkowski  Wdowin, 

2011; Zarębska, Baran, Cygankiewicz,  Dudzińska, 2012; 

Baran, Cygankiewicz,  Zarębska, 2013; Wdowin, Tarkowski, 

 Franus, 2013). 

Laboratory and in situ studies prove that the secretion of 

methane from Polish coal seams is a slow process and there is 

a need to accelerate this process. Intensification of gas de-

sorption depends mainly on the sorption properties of coal, 

seam characteristics (depth, state of stress), temperature, 

humidity and composition of the gas mixture influencing the 

coal. Recovery and utilization of methane is directly linked to 

the issue of occupational safety and health and environmental 

protection in mining. Uncontrolled emission of methane into 

air headings creates hazardous conditions in underground 

working places (outbursts, explosions, lack of oxygen, etc.). 

The principal difficulty of the studies is the preparation of 

relevant tests, as the results need accurate interpretation while 

also complying with the mining conditions. Therefore, the 

prediction of methane recovery from coal seams, based on 

the knowledge of the sorption/diffusion properties of coal 

obtained on the basis of the exchangeable sorption of CO2 

and CH4 and mixtures of these gases, is of great importance. 

The study of the sorption process and its dependence on fac-

tors such as the structure of the sorbent, the nature of the 

sorbed substance and the conditions, in which the process 

takes place (eg, sorbate pressure progression) can be a model 

for methane drainage of exploited seams. The research of the 

coal-gas system is largely dependent on practical issues and 

remains in close connection with the material strength pro-

perties and changing permeability of coal seams. Such 

changes occur under the influence of the sorption of gases 

and vapors, when the coal is swelling and changing its me-

chanical properties. Sorption of mine gases brings about an 

increase of external dimensions of coal, and their desorption 

is accompanied by coal contraction. In spite of the fact that 

coals tends to sorb CO2 much more effectively than CH4, 

their deformation ability due to sorption is three times greater 

during the sorption of carbon dioxide than for methane (Ma-

zumder  Wolf, 2008). This is particularly important during 

the mining of coal in gas mines, because the injection of 

carbon dioxide to the coalbed containing methane may lead 

to increased stress in the rock strata as the coal will not be 

able to expand any further and this will cause changes to the 

seam permeability. 

The main aim of the laboratory tests, presented in this 

study, was to find the relationship between the properties of 

subbituminous coal (porous structure, metamorphic stage, the 

petrographic composition) and the process of methane re-

lease. The impact of sorption of other gases (carbon dioxide) 

on the desorption of methane is a particularly important issue.  

The broad spectrum of issues that arise during the imple-

mentation of the selected work requires the consideration of 

issues relating to the processes of sorption of gas mixtures 

and individual components on the basis of applied adsorption 

theories, coal composition and its porous structure. 

The sorption process associated with the diffusion of sor-

bate in the sorbent structure is of a complex nature, because 

the transfer of the sorbed substances depends on both the 

sorbate and sorbent type, sorbent porosity and the conditions 

in which the process takes place. However, the analysis of 

experimentally obtained sorption isotherms faces difficulties 

due to the heterogeneous structure of porous sorbent, as well 

as additional mechanisms for the transfer of low molecular 

weight substances within the pores of the carbonaceous mate-

rial (Charrière, Pokryszka,  Behra, 2010). According to the 

literature (Weishauptová  Medek, 1998), it is assumed that 

the gas is stored in the coal in four main forms: a) in the  

micropores, b) in the meso and macropores, c) as free gas in 

the free areas of meso and macropores, unoccupied by water, 

d) as gas dissolved in water. The interaction of water with 

natural coal is more complex than the interaction of non-polar 

gases like helium, methane or carbon dioxide. This complexi-

ty is due to the weak dispersion interaction of water with 

coal, the tendency of water to form hydrogen bonds with 

other sorbed water molecules and surface-chemical species, 

and the physisorptive interaction with the coal mineral mat-

ter. The sorption of water vapour and methane on coal sur-

faces is controlled by polar (e.g. carboxylic and hydroxylic) 

functional groups. Polar sites on the coal surface are prefe-

rentially occupied by water, hence reducing the capacity for 

CO2 and CH4 (and other gases) (Gensterblum, Busch,  

 Kross, 2014). Methane sorption capacity of coal is directly 

linked to the coal surface area, which is mainly made of mi-

cropores (Levy, Day,  Killingley, 1997; Crosdale et al., 

1998; Pan, Connel,  Camilleri, 2010). Subsequently, the 

smaller part – in the form of adsorbed gas – binds on the 

surface of meso- and macropores, while the majority is free 

gas contained within the pores. This is directly linked with 

the conclusions of Gilman and Beckie (2000), stating that the 

total methane adsorption capacity increases with the increa-

sing degree of coalification, thus coal rank is considered as 

the main parameter influencing the methane sorption capacity 

of coal (Bustin  Clarkson, 1998; Chalmers  Bustin, 2007; 

Busch  Gensterblum, 2011). This suggestion is based on 

methane adsorption capacity measurements of coal samples 

of varying metamorphic degree, ranging from subbituminous 

coal, through bituminous to anthracite (Gensterblum, Merkel, 

Busch,  Krooss, 2013). The results of the studies suggest, 
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that coals with a low degree of coalification (subbituminous 

coal), both durain and vitrain do not differ in terms of me-

thane adsorption capacity; on the contrary, their capacities are 

similar (Crosdale et al., 1998; Crosdale, 2004). It should also 

be noted, that the volume of micropores is greater for bright 

coal samples; when compared to dull coal samples, the vo-

lume of micropores and the volume of methane does not 

increase with the increasing degree of coalification of low-

rank (subbituminous) coal (Prinz  Littke 2005). 

From a practical point of view, the problem of sorption 

and diffusion of gases in coal is associated with issues such 

as the transport of gases through the coal seam and the sto-

rage of molecules of gaseous or steam substance on the sur-

face and within the coals, namely gas storage in seams and 

competitive sorption of gases from gas mixturepp. Such 

complex interactions in bituminous coal – low molecular 

weight substance (CO2, CH4) system are the reason why this 

topic is of great interest to researchers attempting to identify 

the structure of these sorbents and to describe the processes 

occurring within the coal matrix. 

2. EXPERIMENTAL 

2.1. Samples 

The measurements were made for Polish low-rank coal 

used for the analysis of methane recovery from Polish coal 

mines. Coal samples were collected from sites used for geo-

logical, sorption and petrographic research, as well as for 

assessment of the reservoir’s genetic CH4 content. Table 1 

and 2 show the characteristics of the test material. 

Table 1. Petrography of the investigated samples (mmf = mineral mater free) 

Sample 
Sample interval 

[m] 
Vitrinite  
(mmf) 

Liptinite 
(mmf) 

Inertinite 
(mmf) 

Mineral  
matter 

Vitrinite  
reflectance 

 Top Base % % % % % 

PR-1/7 1071.4 1071.8 71 6 23 3 0.72 

Table 2. Summary of results from the analysis sample 

Sample 
ID 

A(a) V(daf) C(daf) H(daf) N(daf) 
% % % % % 

PR-1/7 5.06 35.71 80.34 5.17 1.33 

Parameters determined according to the following Polish 

standards: V, PN-81/G-045-04516; ash, PN-80/G-04512. 

Elemental analyses for H and C obtained using the Carlo 

Erba EA 1108 elemental analyser. A – ash content; V – vola-

tile matter; C – carbon content; H – hydrogen content; N – 

nitrogen content; superscript daf – dry and ashless state, a – 

analitic state. 

Samples were collected according to the PN-90/G-04502 

standard, and then – in order to average physicochemical 

properties of the test material – the coal was hand-crushed, to 

measurement fraction of 0.5–0.7 mm. As specimens were 

prepared for the measurements, previously absorbed/adsorbed 

gases and vapours had to be removed from the coal surface 

and absorbed/adsorbed molecules had to be removed from 

the microporepp. For that reason, coal specimens were evac-

uated in the conditions of vacuum, under 10
–3

 Pa. Before 

sorption measurements, hard coal samples were degassed at 

318 K by being flushed several times with helium for the 

easier removal of vapors and gases previously adsorbed on 

the coal surface (Saha et al., 2007). 

2.2. Sorption measurements 

Experimental studies of sorption were performed with the 

use of the volumetric method at lower (I) and higher gas 

pressures (II). Low-pressure measurements used a sorptomat 

apparatus, ASAP 2010 (Micrometrics). A coal sample was 

subjected to an ever-increasing pressure of gas from the cy-

linder until equilibrium was reached. The study was per-

formed at 298 and 323 K in low pressure up to 1 bar. The 

experiment was performed at two temperatures, because of 

the change of temperature in a coal seam during mining, 

which can vary by as much as several degrees, which signifi-

cantly affects the balance of the coal – gas system. This is 

also accompanied by the change of gas pressure within the 

seam, and thus the quantity adsorbed by the coal. A descrip-

tion of the coal – gas system should take into account these 

phenomena, while sorption/desorption studies are among the 

methods which are most useful for understanding these pro-

cesses. 

Low pressure measurements use sorbates in the form of 

single gases: CO2, CH4 and their mixture (50% CO2 + 50% 

CH4). The purpose of this experiment was to compare the 

sorption capacity of coal with both carbon dioxide and me-

thane. It is a widely accepted view that coal seams can be 

used as unconventional gas reservoirs (Moore, 2012). Unfor-

tunately, current knowledge on both methane recovery from 

coal seams and the reverse process – storage of gas in seams 

– is still insufficient (Gensterblum et al., 2014). This follows 

from the fact that different factors affect different properties 

of the coal – gas system. However, it is generally accepted 

that typical coal mine gas is composed of 95% methane and 

other gases, while the most common component is CO2. 

Thus, coal mine gas is a gas mixture, not the individual gas. 

When the sorption of single gas over a given area is consi-

dered, three parameters are sufficient: temperature, pressure 

and the quantity of sorbed gas. In the case of sorption of  

a binary mixtures of gases, it is necessary for the gas compo-

sition, during the sorbed phase, and the equilibrium content 

of the gaseous phase be known. So far, no universal model 

describing a mechanism for the extraction of methane from  

a coal seam is fully developed (Liu  Wilcox, 2012a, 2012b; 

Liu  Wilcox, 2011). At the same time, any test results that 

illustrate the interactions between coal and gas mixtures (CO2 

+ CH4) provide information that can be used to develop this 

issue. As mentioned above, the use of both sorbates and their 

mixtures comes from the fact that the extraction of methane 

from coal seams could be enhanced with the use of CO2 sorp-

tion, during its injection into the seam. 

High-pressure measurements were performed with two 

measuring methods. For CO2, sorption studies were per-

formed with the use of a volumetric method, pressure of up to 

3 MPa and at a temperature of 298 K using the original appa-

ratus designed and built at the Department of Energy and 

Fuels AGH (Baran, Broś,  Nodzeński, 2010; Macuda, 

Nodzeński, Wagner,  Zawisza, 2011). 

High-pressure methane excess sorption isotherms of up to 

17 MPa were conducted at 306 K after moisture-equilibrating 

the coal samples according to the ASTM 1412 procedure. 

(High-pressure studies were performed on behalf of the Insti-

tute of Geology and Geochemistry of Petroleum and Coal 

RWTH Aachen University by Philipp Weniger and Bernhard 
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Kross). Further information on the experimental procedure is 

given by Busch, Gesternblum, Kross, and Simons (2006). 

High-pressure sorption studies provide the necessary data on 

the tested coal, depending on the nature of gas and its pres-

sure. This is related to the fact that the coal mass in the seam 

is under the influence of the gas that diffuses through its 

deeper layers to the head, while the exploitation of gas-

bearing seams with mineshafts and tunnels is accompanied 

by a high risk of outburst. Within the tunnels located outside 

the seams, methane release depends on the amount of free 

methane being released from the fractured side of the excava-

tion site. When approaching the face, an additional amount of 

methane is released, extracted from the stress-relieved zone. 

The gas pressure gradient existing between the seam and the 

excavation results in the transfer of gas into the excavation. 

The factor that determines the size of this additional flow is 

the methane-bearing capacity of the seam, which is the 

amount of gas saturation. The balance of coal-gas system 

changes with the changes in gas pressure. Therefore, the 

experiments presented in this study were performed with the 

use of the two aforementioned methods.  

3. RESULTS 

Figures 1 and 2 show the low-pressure sorption/desorption 

isotherms of methane at the temperature of 298 and 303 K. 

The curves show more than double the reduction of adsorp-

tion along with increasing temperature. What is more,  

a change in the shape of the isotherms is clearly visible. At  

a temperature of 298 K the isotherm’s shape corresponds to  

a type I isotherm according to the IUPAC (Langmuir curve), 

while at a temperature of 323 K the curve takes the shape of  

a type II isotherm. The difference in the course of the hyste-

resis of sorption/desorption of the gas as a function of tem-

perature is also noteworthy. In cases with a temperature of 

323 K, the temperature hysteresis loop might indicate larger 

quantities of methane trapped in the porous structure of the 

coal. In light of the polimeric model of coal, any considera-

tion of the properties and behavior of the sorption system 

should take into account coal porosity since the gas deposit 

mechanism is closely related to the size of the pores.  

 

Fig. 1. Low pressure isotherm sorption/desorption of CH4 at 298 K 

 

Fig. 2. Low pressure isotherm sorption/desorption of CH4 at 303 K 

In low rank coals – due to the existence of elements with 

large dimensional variation within their structure – there is, 

relatively, the biggest amount of mesopores between the side 

chains. Meanwhile, the lowest volume is attributable to the 

pores with dimensions of sorbates molecules, which is why 

these coals have a lower volume of the flexible absorbent 

phase than other coals.  

Figures 3 and 4 illustrate low-pressure CO2 sorption. In 

cases of carbon dioxide as sorbate, a similar shape of sorption 

isotherms occurred at both temperatures, while the tempera-

ture increase caused approximately a reduction of double the 

sorption capacity. Also the isotherm’s shape is similar for 

both temperatures of measurement, indicating no effect of 

temperature on the amount of gas within the structure of the 

tested coal. A comparison of the two sorbates curves shows  

a CO2 sorption capacity which is two times higher. When 

looking at a sorption of gas mixtures of CO2 and CH4, with  

a composition of 50% plus 50% (Fig. 5, 6), the obtained 

sorption capacity values were half that of CO2 as a single 

sorbate and almost double that of CH4. This is confirmed in 

the literature (Garnier et al., 2011), while the differences 

between physicochemical properties of sorbates are primarily 

responsible for such a course of the isotherm.  

The observed course of the sorption curve of the mixture 

in a bimodal pattern of coal may be the result of the blocking 

of conical and fissured pores by CH4 molecules. Carbon 

dioxide molecules are linear and non-polar, as the opposite 

dipolar moments of the oxygen-carbon bonds are equilibra-

ted. On the other hand, they are characterized by a high quad-

rupole moment, which might alter the mutual interactions 

with the heterogeneous centres of the structural elements of 

the carbon substrate. The CH4 molecule is tetrahedral and 

apolar in nature, hence the role of its dispersive properties in 

interactions with the carbon material is considerable. The 

shape of desorption isotherm of the mixture which indicates 

almost two times higher value of the gas/mixture stored in the 

structure of the sorbent is also noteworthy. The study results 

– confirmed by earlier studies – confirm that CO2 sorption of 

binary gas mixtures is the preferential type of sorption. Also 

in this case, a temperature increase is responsible for the 
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reduction of the sorption capacity, but the hysteresis loop 

shows the positive impact of temperature increase on the 

efficiency of the desorption process.  

 

Fig. 3. Low pressure isotherm sorption/desorption of CO2 at 298 K 

 

Fig. 4. Low pressure isotherm sorption/desorption of CO2 at 303 K 

Based on sorption isotherms drawn for individual sorbates 

of CO2 and CH4 (Fig. 7, 8) it is reasonable to say that alt-

hough they have a similar shape, throughout the whole tested 

range of pressures, methane sorption capacity of both coal 

types is almost twice as low than that of carbon dioxide sorp-

tion capacity. This is in close connection with kinetic energy, 

sorbates particle size, their shape and the polar nature of the 

CO2 molecule (the presence of quadrupole moment) and the 

non-polar nature of the spherical particle of CH4 (Table 3).  

 

 

 

 

 

 

 

Fig. 5. Low pressure isotherm sorption/desorption of CH4 and CO2 mixture at 298 K 

 

Fig. 6. Low pressure isotherm sorption/desorption of CH4 and CO2 mixture at 303 K 

Table 3. Selected properties of CO2 and CH4 

Parameter Unit CH4 CO2 

Molar mass g/mol 16.04 44.01 

Critical pressure MPa 4.64 7.38 
Critical temperature K 190.56 304.21 

Normal boiling piont K 111.67 194.75 
Critical density g/cm3 0.163 0.466 

Kinetic diameter nm 0.380 0.330 
Critical diameter nm 0.40·0.42 0.28·0.37 

Dipole moment D 0.0 0.0 

Quadrupole moment erg1/2 ·cm5/2 – 4.3·10-26 
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Fig. 7. High pressure excess isotherm sorption of CO2 at 298 K 

 

Fig. 8. High pressure excess isotherm sorption of CH4 at 298 K 

These factors are responsible for (both proven in the litera-

ture and during the study) higher value of the CO2 sorption 

capacity (Li et al., 2010). CH4 molecule in the gas phase has 

a large kinetic energy, therefore in the initial period of con-

tact between the sorbate and the coal, penetration of the coal 

molecule with gas takes place relatively quickly, while an 

exceptionally stable molecule of methane of spherical con-

struction initially penetrates the pores of coal, where it is the 

subject of physical adsorption (Yu et al., 2008). At tempera-

tures higher than the critical, condensation of methane in the 

pores is unlike to occur, while the density of the adsorption 

layer may be relatively high depending on the pressure and 

the diameter of the micropores (Mosher, He, Liu, Rupp,  

 Wilcox, 2013). The methane molecule is characterized by 

the low polarity of bonds and therefore in the process of coal 

– the decisive role of methane interactions is played by dis-

persion forcepp. Meanwhile, the reduction in CO2 sorption 

capacity could indicate that some of the pores are not availa-

ble for methane molecules, as penetration by the molecules of 

this sorbate demands considerable energy in order to spread 

their walls (Cui, Bustin,  Chikatamarla, 2004). The longer 

the coal samples interact with the methane (which is in-

creased by the saturation of the adsorption space, vibration  

of the coal copolymer network elements and the presence  

of flexible phases), more and more areas of coal – which 

initially did not participate in coal-gas interactions – are 

penetrated by the spherical molecules of methane (Zarębska 

 Ceglarska-Stefańska, 2006). 

High-pressure isotherms of CO2 and CH4 are confirmed in 

the literature, proving that carbon dioxide is the gas that al-

lows the best penetration of the internal structure of bitumi-

nous coal. The critical temperature of CO2 (304.5 K) is so 

high, that sorption measurements can be performed at room 

temperatures (293, 298 K), where activated diffusion is rela-

tively fast. A molecule of carbon dioxide – in the absence of 

the permanent dipole moment – is characterized by the pres-

ence of a quadrupole moment, which determines the increase 

of the energy of the interactions between the particle and the 

solid surface (if there are electric charges concentrated on its 

surface) (Mosher et al., 2013). In addition, the small size and 

low activation energy of the gas molecules allows for good 

penetration of the structure of the coal substance (Pan, Luke, 

Connel,  Camilleri, 2010). The shape of the isotherm – at 

the lowest given pressure – may indicate that the initial sorp-

tion process takes place only on the surface, which is fol-

lowed by the process of volumetric filling of the sorption 

space. The increase of the energy of adsorption in micropores 

leads to the rapid increase in the value of adsorption at low 

pressure, which is reflected in the large inclination of the 

initial section of the isotherm. 

The measurements were performed at 298 K, which is be-

low the critical conditions for carbon dioxide. Collected in an 

absorbing phase and flexible absorbing phase, sorbate may 

have a density close to the density of the liquid, while the 

sorbate located in the coal copolymer network, which fills its 

volume, acts like a lubricant between the elements at higher 

pressures. It should be noted that the values of specific sur-

face area derived from the measurements of CO2 sorption at 

298 K are consistent with the values obtained for the same 

coals with the use of X-ray scattering at small angles (Kara-

can  Mitchell, 2003). It can be concluded, that in terms of 

the relationship between the capillary structure and sorption 

properties of porous material within subbituminous coal, 

micropores are the most important feature. 

4. CONCLUSIONS 

The process of sorption/desorption of methane and carbon 

dioxide depends on both the type of gas and the properties of 

studied coal samples. The process of gas release from coal 

depends on the capillary structure, significantly determined 

by the porosity and the maceral composition of the coal. The 

data presented can be applied to actual mining conditions, 

often accompanied by a rapid outcrop of coal-containing gas, 

which causes system instability, rapid desorption, the lower-

ing of temperature and retention of gas in coal. The gas  

– depending on conditions, the capillary structure and the 

permeability of the coal bed – can be slowly released or pro-

duce relatively high pressure within the capillaries. Lower 

values of methane sorption, when compared with carbon 

dioxide, determine – at a given pressure – the possibility of 

increasing the gas release during CO2 injection. Smaller mo-
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lecules are sorbated faster than larger ones, according to the 

mechanism of kinetic resolution. This effect is strongest at 

lower pressures, when the sorption space is clean (degassed) 

(Chaback, Morgan,  Yee, 1996; Cui et al., 2004). Both 

sorption capacity and stability depend on the individual sorb-

ate’s ability to overcome the energy barrier associated with 

the process of diffusion through narrow ultramicropores. The 

narrow entrances to the micropores in bituminous coal are 

comparable with the diameters of methane molecules. There-

fore, this gas needs more time to penetrate the sorption space, 

this is necessary to reach equilibrium sorption. In contrast, 

CO2 molecules have good access to all pores with radii larger 

than 0.271 nm, and therefore only carbon dioxide is able to 

penetrate all ultramicropores (Charrière et al., 2010). A car-

bon dioxide sorption capacity of coal, which is twice as high, 

allows for intensified methane extraction and the simultane-

ous storage of CO2. 
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