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Abstract  
The main goal of this study was the analysis of gas flow in the underground coal gasification process and interactions with the 

surrounding rock mass. The article is a discussion of the assumptions for the geometric model and for the numerical method for its 

solution as well as assumptions for modelling the geochemical model of the interaction between gas-rock-water, in terms of equilibrium 

calculations, chemical and gas flow modelling in porous mediums. Ansys-Fluent software was used to describe the underground coal 

gasification process (UCG). The numerical solution was compared with experimental data. The PHREEQC program was used to describe 

the chemical reaction between the gaseous products of the UCG process and the rock strata in the presence of reservoir waters. 
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1. INTRODUCTION 

Technology concerning underground coal gasification 

(UCG) is one of the most promising, innovative technologies 

connected to the exploitation of mineral deposits. Coal seams 

which are not available by conventional methods of exploita-

tion can be converted into a syngas under the in-situ condi-

tion. The syngas can be processed by power plants or the 

chemical industry and can provide a basis for further chemi-

cal syntheses (Białecka 2008; Perkins 2005; Prabu, Jayanti 

2011, 2012; Wachowicz, Janoszek, Iwaszenko 2010).  

The UGC gaseous products may pose a potential threat to 

the environment by migrating to the surrounding geological 

structures. The syngas initiates a series of chemical reactions 

as a result of rock dissolution in the reservoir waters. The rate 

of chemical reactions depend on the mineral compositions of 

the rock strata, the chemical compositions of groundwater as 

well as the intensity of the flow of gaseous products into the 

rock environment (Motliński, Kowalczyk 2006). 

In work (Białecka 2008) an analysis of the technological 

factors determining the proper conduct of the coal gasifica-

tion process under the in-situ conditions were described and 

major issues in its implementation were identified. The au-

thor of the work (Białecka 2008) describes the negative im-

pact of the UCG process on the environment, mainly on the 

groundwater, the results of studies on the pollution changes 

of groundwater were also presented. The geological aspects 

of gas migration were discussed in the work (Chećko 2008). 

Based on the experimental analysis and modelling studies, 

the main parameters that determine the migration of gases in 

the rock mass were presented. The issue of modelling the 

process of underground coal gasification was discussed in 

(Hadi, Hafez 1986; Perkins 2005; Wachowicz, Janoszek, 

Iwaszenko 2010; Yang 2004, 2005). The author of the work 

(Hadi, Hafez 1986) presents the results of modelling studies 

concerning the process of coal gasification, using the finite 

element method, in order to predict changes of temperature, 

gas composition, pressure and coal consumption. In the work 

(Wachowicz, Janoszek, Iwaszenko 2010) the energy balance 

of thermal phenomena accompanying the coal gasification 

process were done in order to predict any changes to the 

chemical composition of the syngas. The results of the mod-

elling studies were compared with the results of the experi-

mental studies. In (Yang 2004, 2005) the results of the re-

search model of the gasification process were presented in 

order to predict the changes of the chemical composition of 

the syngas and the temperature of the process. The results of 

the modelling studies were compared with the results of the 

experimental studies. 

The ability to predict the chemical reactions, triggered by 

the transport phenomena of gases in the rock mass, seem to 

be necessary to increase the efficiency of the UCG process 

under in-situ conditions and to minimize the negative influ-

ence on the widely understood groundwater environment. 

The numerical model of the underground coal gasification 

process was developed thanks to Ansys-Fluent software. The 

geochemical model of the groundwater environment was 

developed thanks to PHREQQC software.  

http://dx.medra.org/10.7424/jsm130202
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Ansys-Fluent is software that uses computational fluid dy-

namics (CFD), modelling phenomena associated with fluid 

flows (combustion, turbulence, multiphase flows, chemical 

reactions, heat conduction, convection, etc.) including fluid 

flow through porous media is possible thanks to it (ANSYS 

FLUENT… 2009). PHREEQC is a program created to under-

take hydrogeochemical calculations (Appelo, Postma 2005; 

Motliński, Kowalczyk 2006). 

The modelling of gas flow in the underground coal gasifi-

cation process and its interactions with the rock mass can 

provide information regarding physical and chemical phe-

nomena which occur under the conditions of temperature and 

pressure prevalent in the fixed bed. 

2. SCHEME OF MODEL TESTS 

The scheme of the model tests were divided into two main 

stages: 

1. The modelling of underground coal gasification using 

Ansys-Fluent software is achieved by determining (Khadse  

et al. 2006; Białecka 2008; Hadi, Hafez 1986; Jaworski 2005; 

Perkins 2005; Wachowicz, Janoszek, Iwaszenko 2010; Yang, 

Liu 2003; Yang 2004, 2005): 

 the geometry of the object 

 the model grid 

 the physical properties of the gasification agent 

 boundary conditions 

 the physical and chemical properties of coal 

The developed numerical model of the UCG process pro-

vided information regarding the mass fraction of syngas 

components and the temperature in different rock layers. 

2. The modelling of the geochemical model concerning the 

interaction syngas water rock using PHREQQC software is 

found by determining (Appelo, Postma 2005; Motliński, 

Kowalczyk 2006): 

 the chemical composition of the groundwater 

 the mineral composition of the rock strata 

The developed geochemical model provides information 

concerning changes in the chemical composition of ground-

water thanks to interaction with rock strata due to changes of 

partial pressure of syngas components during gasification run 

time.  

3.  MODEL DESCRIPTION AND SIMULATION 

METHODOLOGY 

A simulation of the underground coal gasification process 

was developed based on reactive fluid flow along the gasifi-

cation channel with the given geometry. Simulations of phys-

ical phenomena are related to the transport of mass and ener-

gy and chemical reactions (including the effect of energy). 

The Probabilistic Density Function (PDF) method was used 

to model the chemical reactions of the coal gasification pro-

cess. This method facilitates obtaining the solution of the 

transport equation for mixture fractions, which is a conserved 

scalar. The PDF model reduced the gasification process into  

a mixing problem. The coal volatiles and char are delivered 

into the reaction zone (gasification channel) in the form of  

a single fuel stream and reacts with a gasification agent  

(a mixture of oxygen and steam). The equilibrium chemistry 

equation was used to calculate the gas composition (ANSYS 

FLUENT… 2009; Jaworski 2005). The coal seam and rock 

strata are treated as a homogeneous solid body with variable 

parameters of porous medium and effective thermal conduc-

tivity. Due to the complexity of the equations and the com-

plexity of the numerical methods, the Ansys-Fluent code was 

used to perform the numerical calculations of the UCG pro-

cess. 

3.1. Georeactor model 

Figure 1 presents the geometric model of the rock strata 

surrounding the georeactor. The georeactor is located in the 

coal seam of group 610 of the Upper Silesian Coal Basin 

(USCB) (Bukowska 2005). 

 

Fig. 1. The geometric model of the rock strata surrounding the georeactor developed 
for the simulation of the UCG process 

The characteristics of individual fractions of minerals 

forming the rock strata were presented in Figure 2. The re-

sults were taken from (Strzyszcz, Harabin 2004). The results 

shown in Figure 2 were implemented as a model of mineral 

matrices in a geochemical model on the PHREEQC software. 

The sandstone layer is formed by quartz and chalcedony, 

volume fraction of which is 35% (Fig. 2a), the claystone 

layer is made up of illite in amounts of up to 64% (Fig. 2b), 

the mudstones layer is formed by fractions of kaolinite and 

illite, in an amount up to 30% (Fig. 2c) (Strzyszcz, Harabin 

2004). 

The rock strata in the region of the georeactor in seam 610 

are formed by the following geological structures, namely 

(Bukowska 2005; Strzyszcz, Harabin 2004): 

 a sandstone layer with a thickness from 3.3 m to 40 m 

(Fig. 1), with significant amounts of quartz and chalcedo-

ny (Fig. 2a) 

 a claystone layer with a thickness from 1.7 m to 6.75 m 

(Fig. 1), with significant amounts of illite (Fig. 2b) 

 a mudstone layer with a thickness 10 m (Fig. 2), with 

significant amounts of kaolinite and illite (Fig. 2c) 
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Fig. 2. Characteristics of minerals fraction forming rock strata: a) sandstone, b) claystone, c) mudstone 

The geometry of the georeactor was determined, based on 

the following assumptions (Fig. 1) (15, 16): 

 solid model of the georeactor – 2.5 m × 2.5 m × 1.25 m 

 solid model of mudstone – 2.5 m × 2.5 m × 10 m 

 solid model of sandstone – 2.5 m × 2.5 m × 3.3 m and 2.5 

m × 2.5 m × 40 m 

 solid model of claystone – 2.5 m × 2.5 m × 1.7 m and 2.5 

m × 2.5 m × 6.75 m 

The geometric model of the georeactor is presented in Fig. 

3 (Stańczyk et al. 2009, 2010). 

 

Fig. 3. The geometric model of the georeactor 

Figure 1 and Figure 3 present the results of geometric 

modelling, developed in order to identify: 

 the average temperature of the rock strata 

 the average concentration of gas components in the rock 

strata 

3.2. Discretization  

The next step after preparing a solid model of a georeactor 

is discretization. Discretization is the process of creating  

a numerical area of the solution (Jaworski 2005). The model 

grids of the numerical solution are presented in Figure 4. 

The following types of numerical grids were generated: 

 the sandstone layer (with a thickness 40 m), created from 

1725 nodes and 1088 wireframe elements, reflecting the sol-

id model occupied by the solid (volume 250 m
3
) – Fig. 4a 

 the claystone layer (with a thickness 6.75 m), created 

from 35 712 nodes and 32 269 wireframe elements, re-

flecting the solid model occupied by the solid (volume 

42.18 m
3
) – Fig. 4b 

 the coal seam (with a thickness 1.25 m), created from 

53 016 nodes and 48 622 wireframe elements, reflecting 

the solid model occupied by the solid body (volume 7.80 

m
3
) – Fig. 4c 

 the gasification channel, created from 621 nodes and 272 

wireframe elements, reflecting the solid model occupied 

by the fluid (volume 0.012 m
3
) – Fig. 5d 

 the claystone layer (with a thickness 1.7 m), created from 

62 775 nodes and 58 080 wireframe elements, reflecting 

the solid model occupied by the solid body (volume 

10.625 m
3
) – Fig. 4e 

 the sandstone layer (with a thickness 3.3 m), created from 

62 208 nodes and 57 575 wireframe elements, reflecting 

the solid model occupied by the solid body (volume 

20.625 m
3
) – Fig. 4f 

 the mudstone layer (with a thickness 10 m), created from 

19 074 nodes and 16640 wireframe elements, reflecting 

the solid model occupied by the solid body (volume 62.5 

m
3
) – Fig. 4g 

a) 

 c) 

b) 
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Fig. 4. Numerical grid of the georeactor and the rock strata: a) 40 m sandstone layer, b) 6.75m claystone layer, c) 1.25 m coal seam, d) gasification channel, e) 1.7 m claystone 
layer, f) 3.3 m sandstone layer, g) 10 m mudstone layer 

3.3. Boundary conditions 

After defining the area of the numerical solution, the next 

important step was to define the initial and boundary condi-

tions. The analysis included the model of the gasification 

channel (fluid), the model of the georeactor (porous medium) 

and the model of the rock strata (porous medium), for which 

the boundary conditions were calculated, enabling the verifi-

cation of the experimental results by means of the developed 

mathematical models and the numerical method of CFD 

calculation. Figure 5 shows the measurement system of the 

gas composition process (CH4, CO2, CO, H2), which was 

located at the reactor outlet (point 1 to 5) (Stańczyk et al.  

2009, 2010). 

 

Fig. 5. The measuring system of the selected parameters developed thanks to the 
Ansys-Fluent software 

The measurement of changes of the temperature profile 

were monitored along with the gasification channel in five 

measurement points, at different distances from the inlet of 

the georeactor, in the following manner (Fig. 5), namely 

(Stańczyk et al. 2009, 2010): 

 point 1 – 0.3 [m] 

 point 2 – 0.8 [m] 

 point 3 – 1.3 [m] 

 point 4 – 1.8 [m] 

 point 5 – 2.3 [m] 

The following initial and boundary conditions for each of 

the areas of discretization were examined: 

1. The gasification channel (fluid): 

– the temperature and mass flux O2 – 25 [°C] and from 

the expression  

)4sin(50 tmm   ( 0m – initial mass flux, t – time step) 

(Stańczyk et al. 2009, 2010) 

– the specific heat of oxygen O2 cpO2 (ANSYS FLU-

ENT… 2009) – cpO2 = 834.826 + 0.292T – 

0.0001495T
2
 + 3.41e – 07T

3
 – 2.27∙10 – 10T

4
  

[J∙kg
–1

∙K
–1

] 

– the temperature and mass flux H2O–100 [°C] and from 

the expression 

)4sin(50 tmm   ( 0m – initial mass flux, t – time step) 

(Stańczyk et al. 2009, 2010) 

– the specific heat of steam H2O cpH2O from the expres-

sion (ANSYS FLUENT… 2009) – cpH2O = 1563.08 + 

1.60T – 0.002932794T
2
 + 3.21∙10 – 6T

3
 –1.15∙10 – 9T

4
 

[J∙kg
–1

∙K
–1

] 

– the thermal conductivity of the oxygen-steam mixture 

– 0.0454 [W∙m
–1

∙K
–1

] (ANSYS FLUENT… 2009) 

– the dynamic viscosity of the oxygen-steam mixture – 

1.72e–
05

 [kg∙m
–1

∙s
–1

] (ANSYS FLUENT… 2009). 

2. The coal seam (porous medium): 

– mass loss rate of coal – 4 [kg∙h
–1

] (Stańczyk et al. 2009, 

2010) 

– density – 1400 [kg m
–3

] (Perkins 2005) 

– the porosity of coal from the expression  
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φ = 0.2286 + 0.01041T + 0.00001786T
2
 [%] (T – temperature 

[°C]) (Białecka 2008) 

– permeability β – 1e
–15

 [m
2
] (Chećko 2008) 

– the specific heat of coal cpC from the expression (AN-

SYS FLUENT… 2009) – cpC = –464.18 + 4.97T – 

0.003899261T
2
 + 1.482∙10 – 6T

3
 – 2.885∙10 – 10T

4
 

[J∙kg
–1

∙K
–1

] 

– initial temperature T – 298.15 [K], 

– thermal conductivity – 0.9 [W∙m
–1

∙K
–1

] (Perkins 2005) 

– ultimate/proximate analysis of the coal sample is pre-

sented in table 1: 

Table 1. Ultimate/proximate analysis of the coal seam 

Proximate Analysis  Fixed carbon 63.83% 

Volatiles matter 32.41% 

Ash 2.21% 

Moisture 1.55% 

Ultimate Analysis Carbon (C)  83.84% 

Hydrogen (H)  4.94% 

Oxygen (O)  9.79% 

Nitrogen (N)  1.15% 

Sulphur (S)  0.28% 

Heat of combustion 3.54e+7 [J kg–1] 

3. The sandstone layer (porous medium): 

– density – 2690 [kg∙m
–3

] (Chećko 2008) 

– porosity – 0.6 [%] (Chećko 2008) 

– permeability β – 1e
–14

 [m
2
] (Chećko 2008) 

– specific heat – 1320 [J∙kg
–1

∙K
–1

] (Chećko 2008) 

– initial temperature T – 298.15 [K] (Stańczyk et al. 

2009, 2010) 

– thermal conductivity from the expression (Jian et al. 

2011) – λ = 1.34053–0.00106T + 5.48226∙10
–7

T
2
  

[W∙m
–1

∙K
–1

] 

4. The claystone layer (porous medium): 

– density – 2790 [kg∙m
–3

] (Chećko 2008) 

– porosity – 2.6 [%] (Chećko 2008) 

– permeability β – 1e
–15

 [m
2
] (Chećko 2008) 

– the specific heat – 800 [J∙kg
–1

∙K
–1

] (Chećko 2008) 

– initial temperature T – 298.15 [K] (Stańczyk et al. 

2009, 2010) 

– thermal conductivity from the expression (Jian et al.  

2011) – λ = 1.18965 – 0.0006007T + 3.41831∙10
–7

T
2
 

[W∙m
–1

∙K
–1

] 

5. The mudstone layer (porous medium): 

– density – 2600 [kg∙m
–3

] (Chećko 2008) 

– porosity – 5 [%] (Chećko 2008) 

– permeability β – 2e
–15

 [m
2
] (Chećko 2008) 

– specific heat – 1000 [J∙kg
–1

∙K
–1

] (Chećko 2008) 

– initial temperature T – 298.15 [K] 

– thermal conductivity from the expression (Jian et al. 

2011) – λ = 1.23052 – 0.00066644T + 2.54137∙10
–7

T
2
 

[W∙m
–1

∙K
–1

] 

The following global settings in the ANSYS-Fluent soft-

ware were considered, namely: 

 transient 

 the pressure of gasification – 101 325 [Pa] 

 the model of turbulence – standard k-ε 

 the gasification reaction model – model PDF 

 the heat transfer model – model Discrete Ordinate (DO) 

 gravity acceleration – 9.81 [m∙s
–2

] 

 the gasification agent used in calculations is a mixture of 

oxygen and steam, treated as ideal gas 

 time scale phenomena – 252 000 seconds (70 hours) 

 the relative roughness of the gasification channel – 0.1 m 

 convergence – 1·10
–4

 

4. RESULTS OF THE UCG SIMULATION 

The changes of values in the volume fractions of CH4, 

CO2, CO and H2 and the temperature profile obtained based 

on the experimental data and from the numerical model are 

presented in Figures 6 and 7. The results presented in Figure 

6 were obtained during the measurement of syngas at the 

reactor outlet. The results presented in Figure 7 were ob-

tained during the measurement along the gasification chan-

nel, in the five measurement points, at different distances 

from the inlet of the reactor with the use of the five thermo-

couples, deployed at 0.5m along the axis of the gasification 

channel. 

The large amount of hydrogen, observed in figure 6c), is 

probably the effect of water intrusion from the surrounding 

rocks. 

4.1. Results of syngas flow in rock mass 

In Figures 8–12 the changes of the average concentration 

of syngas components and the temperature obtained from 

solutions of the numerical model CFD are displayed. 

The rapid or sudden changes in the concentrations in Fi-

gures 8 to 12 are associated with the initiation of the ignition 

process and its stability which is observed at the beginning of 

the process. 
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Fig. 6. The volume fraction changes of the syngas components during a time interval of 70 hours, based on the values measured in the reactor and from the CFD model:  
a) CO2, b) CO, c) H2, d) CH4 (Stańczyk et al. 2009, 2010) 

 

     
 

     
 

 

Fig. 7. Change of temperature registered in thermocouple 1 (Fig. 7a), 2 (Fig. 7b), 3 (Fig. 7c), 4 (Fig. 7d) and 5 (Fig. 7e), obtained from the experimental reactor  
and the CFD model (Stańczyk et al. 2009, 2010) 

a) b) 

c) d) 

e) 

a) b) 

c) d) 
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Fig. 8. Quantitative analysis of the average temperature and concentration of gas components in a layer of sandstone with a thickness of 40m during  
a time interval of 70 hours: a) temperature, b) CO2, c) CO, d) CH4, e) H2 

 

       
 

         
 

  

Fig. 9. Quantitative analysis of the average temperature and concentration of gas components in a layer of claystone with a thickness of 6.75m during  
a time interval of 70 hours: a) temperature, b) CO2, c) CO, d) CH4, e) H2 

a) b) 

c) d) 

e) 

a) b) 

c) d) 

e) 
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Fig. 10. Quantitative analysis of the average temperature and concentration of gas components in a layer of claystone with a thickness  
of 1.7m during a time interval of 70 hours: a) temperature, b) CO2, c) CO, d) CH4, e) H2 

      
 

       
 

 

Fig. 11. Quantitative analysis of the average temperature and concentration of gas components in a layer of mudstone with a thickness  
of 10m during a time interval of 70 hours: a) temperature, b) CO2, c) CO, d) CH4, e) H2 

a) b) 

c) d) 

e) 

a) b) 

c) d) 

e) 
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Fig. 12. Quantitative analysis of the average temperature and concentration of gas components in a layer of mudstone with a thickness  
of 3.3m during a time interval of 70 hours: a) temperature, b) CO2, c) CO, d) CH4, e) H2 

5.  MODELLING OF THE GEOCHEMICAL 

INTERACTION OF ROCK-WATER-GAS 

The analysis of the chemical reactions between the rock 

mass, the groundwater and the syngas were developed using 

PHREEQC software. The software facilitates performing  

a series of calculations and simulations, i.e. the distribution of 

the speciation and saturation index, the reaction of dissolution 

and the precipitation of minerals, ion exchange, surface com-

plexation, kinetic processes, one-dimensional transport and 

inverse modelling (Appelo, Postma 2005; Motliński, Kow-

alczyk 2006). 

5.1. Chemical composition of pore water 

The following average concentrations of major compo-

nents of groundwater were identified in the region of coal 

seam 610, namely (Pluta 2005): 

 2.0 mg dm
–3

 (1.85e
–4

 mol∙dm
–3

) of boron (B) 

 0.15 mg dm
–3

 (1.13e
–6

 mol∙dm
–3

) of barium (Ba) 

 27724.25 mg dm
–3

 (7.82e
–1

 mol∙dm
–3

) of chloride ion (Cl
-
) 

 4.67 mg dm
–3

 (8.37e
–5

 mol∙dm
–3

) of iron ion (Fe
2+

), 

 157.72 mg dm
–3

 (4.03e
–3

 mol∙dm
–3

) of potassium ion (K
+
) 

 18132.21 mg dm
–3

 (7.89e
–1

 mol∙dm
–3

) of sodium ion (Na
+
) 

 175.50 mg dm
–3

 (5.47e
–3

 mol∙dm
–3

) of sulphate ion (SO4
2–

) 

The values were implemented as a model of the chemical 

composition of pore waters in the PHREEQC software geo-

chemical model. The results were taken from (Pluta 2005).  

The mineral composition of the rock strata is shown in Ta-

ble 2 (Strzyszcz, Harabin 2004). The values were implemen-

ted as a model of mineral matrices in the PHREEQC software 

geochemical model.  

Figures 13–17 show the change of pore water composi-

tions in conditions of thermodynamic equilibrium, disturbed 

as a result of entering the reactive components of process gas 

as a mixture of CH4, CO2, CO, H2 to rock mass. 

The results of the numerical solution show a significant 

deterioration in the chemical status of the groundwater. The 

following markers were exceeded, namely: 

 pH 

 ion concentration of K
+
 and Fe

2+
 – observed in the sand-

stone (Fig. 13 and Fig. 15) and claystone layer (Fig. 14) 

 ion concentration of SO4
2-

 observed in sandstone layer of 

(Fig. 13 and Fig. 15) 

 ion concentration of Cl
-
 and Na

+
 observed in all layers 

The increase of the concentration of SO4
2-

, Cl
-
 and Na

+
 

ions will result in the deterioration of groundwater quality by 

the salinity as well as create conditions for the formation of 

groundwater with a high concentration of sulphate ions. 

A significant increase in the concentration of iron ions in 

groundwater, observed mainly in the claystone layer (Fig. 

14), is the result of the weathering of rocks, which contain 

iron (siderite FeCO3). 

 

 

a) b) 

c) d) 

e) 
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Table 2. The mineral composition of rock layers surrounding the georeactor 

Layer 
Concentration [mol∙L–1] 

Quartz Chalcedony Feldspars Micas Chlorites Calcite Dolomite Siderite Aragonite Kaolinite Illite 

Sandstone 15 15 1.063 0.047 0.034 0.146 0.079 0.126 0.146 0.432 0.144 
Claystone 1.440 1.440 0.2 0.035 0.595 0.153 0.083 0.132 0.153 1.281 2.276 

Mudstone 4.73 4.73 1.266 0.034 0.025 0.325 0.189 0.301 0.348 3.021 0.974 
 

 

 

 

 

        
 

 

Fig. 13. Quantitative analysis change of pH and of groundwater components as a result of syngas migration into sandstone layer with a thickness  
of 40m during a time interval of 70 hours: a) Na+, K+ and Cl-, b) Fe2+ and SO4

2-, c) pH 

          

 

 

Fig. 14. Quantitative analysis change of pH and of groundwater components as a result of syngas migration into claystone layer with  
a thickness of 6.75m during a time interval of 70 hours: a) Na+, K+ and Cl-, b) Fe2+ and SO4

2-, c) pH 

 

 

 

 

 

 

 

a) b) 

c) 

a) b) 

c) 
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Fig. 15. Quantitative analysis change of pH and of groundwater components as a result of syngas migration into claystone layer with a thickness of 1.75m during a time interval 
of 70 hours: a) Na+, K+ and Cl-, b) Fe2+ and SO4

2-, c) pH 

        

 

Fig. 16. Quantitative analysis change of pH and of groundwater components as a result of syngas migration into sandstone layer with a thickness of 3.3m, during a time interval 
of 70 hours: a) Na+, K+ and Cl-, b) Fe2+ and SO4

2-, c) pH 

a) b) 

c) 

a) b) 

c) 
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Fig. 17. Quantitative analysis change of pH and of groundwater components as a result of syngas migration into mudstone layer with a thickness  
of 10m during a time interval of 70 hours: a) Na+, K+ and Cl-, b) Fe2+ and SO4

2-, c) pH 

6. SUMMARY AND CONCLUSIONS 

The model of the georeactor and the rock strata was deve-

loped using the functionality of the design software Ansys-

DesignModeler. The three-dimensional model was imported 

with Ansys-Fluent software. Based on the 3D model, the 

discretization area was developed. The numerical model 

which predicts parameters of the underground coal gasifica-

tion process was formulated based on the discretization area. 

Data obtained from the numerical model were compared with 

the experimental results and statistically analysed. The geo-

chemical model which predicts the chemical change of the 

groundwater environment was developed with the 

PHREEQC software. 

The following conclusions were formulated: 

1. Chemical reactions between the pore water and the syngas 

dissolution and the precipitation of minerals from the rock 

strata were observed. The chemical reactions that occur in 

the groundwater environment depend on mineral composi-

tion, the texture of rocks, filtration properties, temperature, 

the concentration of syngas components, the flow rate of 

syngas and the chemical composition of groundwater. 

2. The Ansys-Fluent software is a useful tool for creating 

models of the coal gasification process. 

3. Obtained parameters from the numerical solution facilitat-

ed developing the geochemical model of the reaction and 

transport of syngas migration into surrounding rocks 

thanks to the PHREEQC software. 
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